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Abstract

Detailed numerical calculations are presented in this paper for the steady-state free convection within an inclined
cavity filled with a fluid-saturated porous medium. The inclined walls are maintained at constant but different tempera-
tures, while the horizontal walls are adiabatic. To simplify the effort in matching the grid mesh with the inclined walls
of the cavity, the computational domain is mapped onto a rectangular shape cavity using a non-linear axis trans-
formation. The governing equations (in the stream function and temperature formulation) are expressed in the new
coordinate system and solved numerically using the ADI (Alternative Direction Implicit) finite-difference method. Flow
and heat transfer characteristics (stream lines, isotherms and average Nusselt number) are investigated for a wide range
of values of the Rayleigh number, inclined angle and cavity aspect ratio. The present solutions for a vertical cavity are
compared with the known results from the open literature. It was found that these results are in very good agreement.
We believe that these results serve as a reference against which other solutions for the present problem can be compared
in the future. © 1998 Elsevier Science Ltd. All rights reserved.

Nomenclature Greek symbols

a cavity width o effective thermal diffusivity of the porous

A aspect ratio, equation (10) medium

g acceleration due to gravity P coefficient of thermal expansion

k effective thermal conductivity of the porous AT temperature difference

medium ¢ prescribed error

K permeability of the porous medium 0 dimensionless temperature, equation (7)

L cavity length v kinematic viscosity

n unit vector £, dimensionless variables, equation (7)

Nu local Nusselt number o ratio of heat capacity of porous medium to that of
Nu average Nusselt number fluid

¢ wall heat flux 7 dimensionless time, equation (7)

Ra Rayleigh number, equation (10) ¢ inclined angle

¢t time W stream function

T fluid temperature Y dimensionless stream function, equation (7).

T. temperature of the cold wall

T, temperature of the hot wall

x,y Cartesian coordinates

X, Y transformed coordinates, equation (3).

1. Introduction

The subject of thermal convection in porous media has
* Corresponding author been studied extensively in recent years and the growing
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volume of work devoted to this subject has been amply
documented in the monographs by Nield and Bejan [1],
and Ingham and Pop [2]. This interest has been motivated
by its importance in many natural and industrial appli-
cations. Prominent among these applications are heat
exchangers, solar power collectors, migration of moisture
through air contained in fibrous insulation, energy
efficient drying processes, underground spread of pol-
lutants, grain storage, food processing, packed-bed cata-
Iytic reactors, flows in water-percolated soils, cooling of
radioactive waste containers, to name just a few.

Free convection in a rectangular porous cavity, whose
vertical walls are maintained at two different tem-
peratures or heat fluxes and the horizontal walls are insu-
lated, is a fundamental problem in thermal convection in
porous media, which has received the attention of many
investigations. Walker and Homsy [3], Bejan [4], Prasad
and Kulacki [5], Beckermann et al. [6], Gross et al. [7],
Lai and Kulacki [8], Manole and Lage [9] have con-
tributed some important theoretical results to this prob-
lem. The problem is still of continuing theoretical interest
because it provides a simple geometry on which numerical
techniques may be tested, even though exact analytical
solutions do not exist.

However, relatively little work has been done on the
problem of free convection in an inclined rectangular
enclosure filled with a porous medium. An overview of
this problem has been documented in the review article
by Caltagirone [10] and in other papers by Moya et al.
[11], Vasseur et al. [12] and Shen et al. [13]. Unlike the
porous rectangular cavity free convection flow problem,
the flow in an inclined cavity is not as simple to determine
because of the sloping walls. In general, the mesh nodes
will not lie along the sloping walls and, as a result, from
a programming and computational point of view, the
effort required for determining the convective flow in an
inclined enclosure increases significantly.

The present paper concerns a numerical study of the
steady free convection flow in an oblique cavity filled
with a homogeneous porous medium. Some flow and
heat transfer characteristics are determined for a large
range of inclination angles, Rayleigh numbers and aspect
ratios. To do it, the computational domain is mapped
onto a rectangular shape cavity using a nonlinear axis
transformation as proposed by Liu and Guerra [14], and
Facas and Mottioli [15]. The Darcy momentum and
energy equations are solved numerically using the Alter-
nating Direction Implicit (ADI) method proposed by
Douglas and Peaceman [16] applied in the transformed
coordinate system. Sample results of flow and heat trans-
fer characteristics are presented in graphical and tabular
forms. Such graphs and tables can serve as a reference
against which other numerical solutions or experimental
data can be compared in the future for such inclined
cavities.

To the authors’ best knowledge this general situation

of free convection in oblique enclosures has not yet been
investigated.

2. Basic equations

The problem under consideration is shown in Fig. 1(a).
Two inclined isothermal walls at temperatures 7, (hot)
and T, (cold), and two adiabatic horizontal walls enclose
a fluid-saturated porous medium. The enclosure is of
width a, length L and is inclined at an angle ¢ with respect
to the vertical plane. In the porous medium, Darcy’s law
is assumed to hold, the fluid is assumed to be a normal
Boussinesq fluid and the inertial effects are neglected.
Under these assumptions, the conservation equations for
momentum (Darcy) and energy for unsteady two-dimen-
sional free convection flow can be written as, see Nield
and Bejan [1],

2.7, 2.7
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where x and y are the Cartesian coordinates measured in
the horizontal and vertical directions, respectively, ¢ is
the time, g is the acceleration due to gravity, o and K are,
respectively, the thermal diffusivity and permeability of
the porous medium, f is the coefficient of thermal expan-
sion and o is the ratio of heat capacity of porous medium
to that of fluid. The stream function ¥ is defined in the
usual way u = 0/dy and v = — d/0x.

In general, no rectangular grid mesh can be generated
that fits all four surfaces. However, the computational
domain can be mapped onto a rectangular domain, as
shown in Fig. 1(b), by using the following trans-
formation, used also by Lin and Guerra [14] and Facas
and Mottioli [15],
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Fig. 1. (a) Physical model and coordinate system. (b) Trans-
formed computational domain.
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X=x—ytan¢, Y=y. 3)
Note that using this transformation one has

0 0 0 0 0

é‘x:ﬁ” 5=07Y—tal’l ﬁ, (4)
With (3) and (4), equations (1) and (2) became
>y >y
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Further, we introduce the following dimensionless
variables
¢ =Xla, n=Y/(Lcos¢), 1= t(a/oalcos ),
Y=ylo, 0=(T—T)/AT (7)
where T, =(T,+T.)/2 is a reference temperature and

AT = T,,— T, with T, > T.. Expressed in these variables,
equations (5) and (6) transform to
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where A is the cavity aspect ratio and Ra is the Rayleigh
number which are defined as

A= L/a, Ra=gKPATa/(ow). (10)

Using (4) and (7), the relevant hydrodynamic and ther-
mal boundary conditions of equations (8) and (9) can be
written as

1
Y =0, 0=—§ oné=1

00 ., 00
Y =0, %fAsmqb%—O onn=0,1. 1

The problem is to find the functions y and 6 which
satisfy the governing equations (8) and (9), and boundary
conditions (11). The solution of this problem is depen-
dent on the parameters 4, Ra and ¢.

Having determined y and 0, we can evaluate the heat
fluxes from the oblique walls

go = —kn*VT (12)

where k is the thermal conductivity of the porous medium
and n is the unit vector normal to the oblique walls

n = {—cos¢,sin¢}. (13)
Using (7), (12) and (13) we can express ¢, as

_ kAT (simb a0 @) (13)
D= T acosp)\ 4 o),
The local Nusselt number, which is defined as
_aq
Nu(En) =% (1)
then becomes
1 (singdd 00
Nu(G,n) = — cosd)( A o %>5:0)]~ (16)
Finally, the average Nusselt number is given by
1
Nu(&) =J Nu(&,n) dn. a7
0

3. Results and discussion

The coupled equations (8) and (9) along with the
boundary conditions (11) are solved numerically using
the Alternating Direction Implicit (ADI) method
developed by Douglas and Peaceman [16] for heat flow
problems and adapted by Wilkes and Churchill [17] for
natural convection in enclosures. The method leads to
three diagonal systems of simultaneous equations that
are much easier to solve than the penthadiagonal systems,
which arise when fully implicit methods are used. The
iteration process is terminated when the following cri-
terion is satisfied

Zl%ﬁf‘*ﬂA/ZlXﬁl <e (18)
ij | i

where y stands for y or 0; n denotes the iteration order
and ¢ is a prescribed error (¢ = 107°). A good description
of this method is given in Baytas [18-20] and it is
unnecessary to repeat the details here.

Numerical results were obtained for a cavity with an
aspect ratio 4 = 0.7, 0.9 and 1.0 (square cavity) when
the inclination angle ¢ =0°, +15° +30°, +45° and
+60°. The values covered for the Rayleigh number are
Ra =10, 100, 1000, 5000 and 10000. Tables 1 and 2
compare the accuracy of the average Nusselt number
Nu for A =1.0 and ¢ =0° (vertical enclosure), with
A =0.7 and 0.9, and different values of the Rayleigh
number with some numerical solutions reported by
different authors. It is seen from these tables that the
agreement between the present and the previous results
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Table 1 o
Comparison of Nu for A =1 and ¢ = 0° with some previous
numerical results

Ra
Authors 10 100 1000 10000
Walker and Homsy [3] 3.097 1296 51
Bejan [4] 4.2 15.8 50.80
Beckerman et al. [6] 3.113 48.9
Gross et al. [7] 3.141  13.448 42.583
Manole and Lage [9] 3.118  13.637 48.117
Moya et al. [11] 1.065 2.801
Present results 1.079  3.16 14.06 48.33

Table 2 o
Comparison of Nu for ¢ = 0° with some previous numerical
results

Ra

1000 5000

Prasad and Prasad and

Kulacki Present Kulacki Present
A [5] results [5] results
0.7 13.51 10.13 38.95 34.24
0.9 14.19 12.27 35.49 31.86

is very good. Therefore, we are confident that the results
presented in this paper are very accurate.

The combined effects of inclination and Rayleigh num-
ber on the fluid flow patterns (streamlines and isotherms)
are illustrated in Figs 2—-6. It is seen from these figures that
isotherms (left) are equally spaced between the maximum
temperature of the hot wall and the minimum tem-
perature of the cold wall. The streamlines (right) are also
equally spaced with specified increment between a value
of zero on the boundaries and the extreme value /.. It
is worth mentioning that the results for the vertical square
cavity (¢ = 0°) compare very well with those of Prasad
and Kulacki [5]. Further, we see that a sufficiently large
value of the Rayleigh number (Ra = 10*) causes a bound-
ary layer flow in which the dominant mode of heat trans-

fer is convection. This can be seen more clearly in Fig.
2(b). Then, Figs 2(b)-6(b) show that the flow field com-
prises a primary cell of relatively high velocity, circulating
around the entire enclosure. This cell becomes smaller as
¢ increases. A cell also arises for the temperature field at
a sharper corner, as can be seen from Fig. 5(d) left.
However, Fig. 6(d) left indicate that two cells occur at
¢ = —60° due to the much lower velocity prevailing at
that corner and they occupy nearly half of the cavity
area.

Values of the local Nusselt number Nu on the left and
right walls of the square cavity (4 = 1) are plotted in Fig.
7 against the dimensionless coordinate # for Ra = 10°.
Figure 7(a) shows the variation of Nu for ¢ = 45° and
Fig. 7(b) is for ¢ = —45°. It can be seen from Fig. 7(a)
that on the hot wall Nu first increases and then decreases
taking a minimum value near the top wall of the cavity.
This is because of lower convective velocity on the top
wall. However, on the cold wall, Nu first decreases and
then increases and reaches its maximum value near the
top wall. In contrast, Fig. 7(b) shows that on the hot
wall, Nu decreases monotonically from its maximum
value near the bottom side to zero near the topside. But,
Nu at the cold wall increases monotonically from zero at
the bottom side to a maximum value at the topside of the
wall. This is consistent with the observed higher con-
vective flow in the upper and lower corners of the cavity,
as can be seen from Figs 2-6.

Finally, Fig. 8 illustrates the variation of the average
Nusselt number Nu at the hot (left) wall of the square
cavity (4 = 1.0) when Ra = 100, 1000 and 10000. As
expected, Nu increases as Ra is increased. It is also seen
that Nu decreases almost linearly for relatively low values
of Ra but, as Ra increases to 10000, the variation of Nu
deviates from its linear variation.

4. Conclusions

Steady-state flow and heat transfer characteristics have
been investigated for the free convection flow in an
inclined cavity filled with a porous medium. With numeri-
cal integration of the complete set of couplet partial
differential equations, based on time ADI method, we
have been able to confirm the stable steady-state solu-
tions, obtaining very good agreement with known results
from the open literature. However, computations are
increasingly difficult as ¢ increases. The results show
that near the sharp corners of the cavity the flow and
temperature break down into a series of subvortices. The
subvortex system grows in size with increased inclination
and Rayleigh number.

We hope to report further results on this problem soon,
especially as regards to other values of the parameter A.
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Fig. 2. Isotherms and streamlines for 4 = 1.0 and ¢ = 0°; (a) Ra = 10°, (b) Ra = 10*.
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Fig. 3. Isotherms and streamlines for 4 = 1.0 and Ra = 10% (a) ¢ = 15°, (b) ¢ = 30°, (c) ¢ = 45°.
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Fig. 5. Isotherms and streamlines for 4 = 1.0 and Ra = 10% (a) ¢ = 15°, (b) ¢ = 30°, (c) ¢ = 45°, (d) ¢ = 60°.
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